汽水及び内湾域における生態系の 健全性評価モデルの開発

AN EVALUATION MODEL ON CLOSED WATER ECOSYSTEMS FOR LAKES, PONDS AND BRACKISH LAGOONS

桑原久実¹・齊藤肇²・秋田雄大³ Hisami KUWAHARA, Hajime SAITO and Takahiro AKITA

 ¹正会員 農博 (独)水産総合研究センター水産工学研究所 水産土木工学部 環境分析研究室 (〒314-0421 茨城県鹿島郡波崎町海老台)
²農博 (独)水産総合研究センター水産工学研究所 水産土木工学部 環境分析研究室 (〒314-0421 茨城県鹿島郡波崎町海老台)
³地環修 (株)アルファ水工コンサルタンツ 技術部(〒063-0829 北海道札幌市西区発寒9条14丁目)

An evaluation model on closed water ecosystems coupled with the benthic system was examined. The model was composed of 7 pelagic compartments (phytoplankton, zooplankton, ammonium, nitrate, phosphate, particulate organic matters and dissolved oxygen) and an elaborative sediment flux model that represents the benthic system including microalgal functions. The model showed contrasting dynamics depending on water depth regimes. 1) In the shallow lake model (2 m), benthic microalgae grew rapidly and consumed nutrients in the bottom layer. 2) In the deep lake model (4 m) in which benthic microalgae rarely grew, nutrients from the sediment triggered phytoplankton outbreaks in the pelagic layer, and the light availability to benthic microalgae was severely limited. These results suggest the importance of light attenuation associated with depth and turbidity. This model could highlight the role of benthic-pelagic couplings in closed waters.

Key Words : ecosystem modeling, sediment flux, benthic algae

1.序論

我が国は,高度経済成長期における水汚染への反 省から環境法制を整備し , 天然水域への排水を厳し く制限してきたが,閉鎖性水域における貧酸素化や 赤潮といった富栄養化問題は解決していない^{1),2)}. 沿岸域では埋め立て・干拓・護岸により広大な浅場 が失われ,浅場における生物学的な代謝機能が水質 浄化に果たす役割が注目されるようになったのは最 近のことである.透明度が高く浅い湖沼では,水草 が底質から溶出する栄養塩を吸収するため,植物プ ランクトンの増殖が抑制されるが,栄養塩負荷量が 水草による吸収能力を上回ると植物プランクトンが 増殖し,水域の透明度が低くなることで水草が生育 できなくなり,栄養塩の溶出によってさらに植物プ ランクトンが増殖するという,カタストロフ的な富 栄養化現象が指摘されている³⁾. 汽水湖はヤマトシ ジミ・シラウオ等の漁場,仔稚魚の保育場あるいは 親水性レクリエーションの場として高い社会的価値 を有するが、その水理構造の閉鎖性から有機汚濁の 進行が著しく,特に汽水性水草の多くは希少種に指

定され,今後の動向が危惧されている⁴⁾.また,護 岸によって広大なアシ帯を失い,汽水湖における栄 養塩吸収能力は過去と比較して著しく減少したと考 えられる.このように透明度が低く大型植物による 栄養塩吸収を期待し難くなった水域では,水柱への 栄養塩溶出を抑制する機能として,光供給が比較的 少なくても生育できる底生微細藻類による光合成が 相対的に重要になってくる.底生微細藻類による光合成が 相対的に重要になってくる.底生微細藻類による栄 養塩吸収機能が水域の水質変動パターンに及ぼす効 果についてはいくつかの解析事例が報告されている ^{5.9)}.たとえば,米国Rehoboth湾を対象とした解析事 例によると,底生微細藻類を考慮する場合としない 場合では,植物プランクトンのプルームの位相と振 幅に差が生じ,沿岸域の物質循環に変化をもたらす ことが指摘されている⁸⁾.

以上の様な背景から筆者らは,汽水域や内湾域を 対象とし,その健全性を評価するため,まず浅場に 生育する生物の環境浄化機能に着目し研究を進めて きた.本研究では,従来の漂泳系を主体とした物質 循環モデルにDitro堆積物フラックスモデル¹⁰及び Cercoらの底生珪藻代謝モデル⁸を組み合わせた生態 系モデルを開発するとともに,閉鎖的水域での試計 算を行い,水深による水質の変動特性の相違につい て検討したので,その概要を報告する.

2. モデルの概要

(1) 水質モデル

水質モデルは,図-1に示すとおり太陽放射による 鉛直一次元熱輸送方程式を用いて各層の水温が求ま り,この水温と塩分による密度勾配から鉛直拡散が 求まるモデルである.鉛直拡散係数は,乱流拡散型 のリチャードソン数に依存する関数により算出され る.

図-1 水質モデルの概要

漂泳系モデルのコンパートメントは,植物プラン クトン(Phy),動物プランクトン(Zoo),懸濁態有機 物(POM),無機態栄養塩であるアンモニア態窒素 (NH₄),硝酸態窒素(NO₃),無機態リン(PO₄)および溶 存酸素(DO)の7種である.各コンパートメント・プ ロセスの概要を図-2に示す.

図-2 コンパートメント・プロセスの概要

各プロセスの定式化は,一般的な漂泳系モデル, 例えばKremerら¹¹⁾に準じた.

植物プランクトンの光合成は,栄養塩および光強 度を制限要因とし,温度と植物プランクトン現存量 に依存する関数として定式化した.栄養塩による制 限はMichaelis-Menten型の式を用いた.窒素に関し ては,アンモニアの選択吸収性を考慮し濃度に応じ て*NH₄,とNO*3の摂取比を変化させた¹²⁾.光強度制限 についてはMonod型の関数を対象セル内で積分する 形で解析的に算出した.また光消散係数については 直上の植物プランクトンおよび懸濁態有機物による 遮光効果を考慮した.

動物プランクトンによる捕食は、餌料である植物 プランクトンに依存し、動物プランクトンの現存量 に比例するとして定式化した.また、捕食の制限と してIvrev式を使用した、動物プランクトンの呼吸お よび排泄に関して、栄養塩への寄与を代謝率、懸濁 態有機物への寄与を排泄率として定式化した.

(2) 底質モデル

底質モデルはDitoroのモデル¹⁰⁾を参考にした(図-3). 底質活性層は,好気層と嫌気層を考慮している.水 質モデルとの結合は,直上水からのPOM沈降堆積と 底質表層での栄養塩フラックスで与えられる.底質 内の栄養塩は,POMの初期続成作用による無機化, 吸着および分解の結果算出されるが,有機堆積物の 分解速度により3クラスに分類(Multi G-Class model) され,各クラスの分解速度の違いにより, 0.0350/day, 0.0018/day, 0.0000/day (順に半減期は, 20day, 1year, 無反応)である.

図-3 底質モデルの概要

本モデルで取り扱う栄養塩(NH4, NO3, PO4)や溶存酸素DOの分子拡散係数は,相対的に大きな差が無いため,酸素に着目して式(1)のように底質酸素要求量 SOD と直上水酸素濃度[O,]の関数として定義して

いる.

$$K_{L01} = \frac{SOD}{[O_2]} \tag{1}$$

栄養塩の質量収支式は,式(2)および式(3)で表される.

$$H_{1} \frac{dC_{T1}}{dt} = -k_{1}H_{1}C_{T1} + w_{12}(f_{p2}C_{T2} - f_{p1}C_{T1}) + K_{L12}(f_{d2}C_{T2} - f_{d1}C_{T1}) - w_{2}C_{T1} + J_{T1} + K_{L01}(f_{d0}C_{T0} - f_{d1}C_{T1})$$
(2)

$$H_{2} \frac{dC_{T2}}{dt} = -k_{2}H_{2}C_{T2} - \frac{W_{12}(f_{p2}C_{T2} - f_{p1}C_{T1})}{-K_{L12}(f_{d2}C_{T2} - f_{d1}C_{T1})} - \frac{W_{2}(C_{T1} - C_{T2}) + J_{T2}}{-W_{2}(C_{T1} - C_{T2}) + J_{T2}}$$
(3)

ここで,添字0,1,2はそれぞれ直上水,底質の 好気層および嫌気層を表す.また,Hは層厚, C_T は栄養塩濃度(溶存態および粒状態の和),kは反 応速度定数, f_d は溶存態分配率, f_p は粒状態分配 率, K_{L12} は溶存態輸送係数, w_{12} は粒状態輸送係数 w_2 は埋没係数, J_T は初期続成作用等によるソース を表す.

式(2)と式(3)の右辺第一項は分解,第二項は底質 内の粒状態混合,第三項は底質内の拡散,第四項は 埋没,第五項はソースを意味する.式(2)の右辺第六 項は底質表面における拡散を意味する.

SODは, 硝化に利用される窒素利用酸素消費量 NSODと硫化水素およびメタンの生成に利用される 炭素利用酸素消費量CSODの和として式(4)で表される.

$$SOD = NSOD + CSOD$$
 (4)

式(1)~(4)は非線形方程式である.解法は,まず SOD濃度を仮定し,このSODを用いて式(1)の K_{L12} を算出する.その K_{L12} を式(2),(3)の右辺に代入し, 左辺の栄養塩濃度を求める.この栄養塩濃度を用い て,式(4)より新たなSODに修正し,再び,式(2),(3) より新たな栄養塩濃度を求める.これを繰り返し, SODが収束するように求める.ここでは,Brent¹³⁾の アルゴリズムを用いた.

(3) 底生微細藻類モデル

底生微細藻類は底質上に薄く分布し,底質から溶 出する栄養塩を光合成により吸収して成長する.こ のため水域の富栄養化の抑止効果が期待される. Cercoら⁸⁾を参考にして作成した底生微細藻類モデル の概要を図-4に示す.

底生微細藻類の効果を考慮した底質からの栄養塩 フラックスは図-5のようになる.

[NH4] FNH4 (水中への フラックス> [NOっ]	= J _{NH4} - (Pn ・ G - R)・Anc <底質系栄費塩 <nh4選択率> <成長率> <呼吸率><n c比=""> フラックス>→初期続成作用によるもの</n></nh4選択率>
FN03 (水中への フラックス) [PO4]	= J _{NO3} - ((1-Pn) · G) · Anc <店質系栄養塩 〈NO3選択率〉 〈成長率〉 〈N/C比〉 フラックス〉→拡散によるもの
11 041 FP04 〈水中への フラックス〉	= J _{PO4} - (G - R)・Apc <底質系栄養塩 〈成長率〉〈呼吸率〉〈P/C比〉 フラックス〉 →初期続成作用によるもの
[DO] F∞ ☆中への フラックス〉	= SOD - (Pr · G)・Aoc 〈底質酸素要求量〉〈光合成率〉〈呼吸率〉 〈O/C比〉

図-5 底生微細藻類の効果を考慮したフラックス

(4) 計算条件

閉鎖的水域における水深による水質変動特性の違いを検討するために,水深が2mと4mの場合について計算を試みた.現象を簡易化するため,有機物のコンパートメントは植物プランクトン(Phy),懸濁態 有機物(POM)及び底生微細藻類(B.Algae)の3種とした. 層厚は25cm,期間は3年とした.

計算に使用した主なパラメータは,種々文献⁸⁻¹⁶⁾ を参考にした(表-1).

また,富栄養化状態を想定して初期値を設定した.

表-1 主なモデルパラメータ

	パラメータ名	数値	単位	文献		
水質モデル	Phy最大光合成速度	2.5	(1/day)	14)		
	Phy 窒素半飽和值	0.1	(mgN/l)	15)		
	<i>Phy</i> リン半飽和値	0.01	(mgP/l)	15)		
	<i>Phy</i> アンモニア選択係数	104.42	(I/mg)	12)		
	<i>Phy</i> の半飽和光量	800	(uE/m2/s)	16)		
	<i>Phy</i> 呼吸速度	0.03	(1/day)	11)		
	Phy 呼吸温度係数	0.0524	(1/)	11)		
	Phy枯死速度	0.01	(1/day)	11)		
	Phy枯死温度係数	0.0693	(1/)	11)		
	Phy沈降速度	0.1	(m/s)	11)		
	Zoo最大捕食速度	0.35	(1/day)	11)		
	Zoo捕食速度温度係数	0.0693	(1/)	11)		
	Zoo捕食閾値	0.001	(gC/m3)	11)		
	<i>Zoo</i> 捕食IvIev指数	5.0	(m3/gC)	11)		
	Zoo代謝率	0.4	-	11)		
	Zoo排泄率	0.3	-	11)		
	Zoo死亡速度	0.05	(/day)	11)		
	Zoo死亡温度係数	0.0693	(1/)	11)		
底	B. Algae最大増殖速度	2.25	(/day)	8)		
生	<i>B. Algae</i> 半飽和光量	90	(uE/m2/s)	8)		
珪	B. Algae平時成長温度係数	0.004	(1/)	8)		
藻	B. Algae最適成長温度係数	0.006	(1/)	8)		
Ð	<i>B. Algae</i> 被捕食速度	0.15	(1/day)	8)		
デ	<i>B. Algae</i> 呼吸速度	0.01	(1/day)	8)		
ル	B. Algae最適成長温度	20	(1/)	8)		
共通	<i>Phy</i> による消散係数比	0.7	-	8)		
	<i>POC</i> による消散係数比	0.7	-	8)		
	<i>Background</i> の消散係数	0.3	-	8)		
	N/C比	0.176	(g/g)	10)		
	P/C比	0.0243	(g/g)	10)		

3.結果と考察

(1) 結果

図-6に計算の結果を示す.水深2mが場合,光が底層に到達し,底生微細藻類は2月頃から成長し4月に最大となり,その後衰退する.この衰退は,植物プランクトンの生育と一致する.植物プランクトンは8月に最大となり,その後衰退する.

底生微細藻類の現存量が大きい場合,底質からの 栄養塩の溶出を吸収し,不足分は水中から吸収する (アンモニアフラックス:FNH4は負値).また,底質 での酸素要求を満たし余剰分を水中に供給する (SODは負値).このため水中のNH4,PO4は低く, DOは底層であっても高く保たれている.底生微細 藻類の現存量が小さい場合,底質からの栄養塩は溶 出する(FNH4は正値).この場合,植物プランクトン は表層ほど多く,栄養塩を吸収するため,水中の栄 養塩濃度は下層ほど高くなる.また底質の酸素要求 量は増加し(SODは正値),水中の酸素濃度は下層ほ ど低くなる.

水深が4mの場合,通年,光が底層に達しないた め底生微細藻類は生育できない.このため底質にお ける栄養塩溶出や酸素要求量を制御できない.この ため,底質における栄養塩溶出や酸素要求量は,通 年,正の値となっている.特に,夏場,水中のNH₄, PO₄は高く富栄養化し,底層は貧酸素化している.

(2) 考察

浅場(水深2m)を仮定したモデルの計算結果で は、十分な光が底層まで到達するため、底生微細藻 類による栄養塩吸収機能が発揮され、水中の栄養塩 濃度が周年にわたって低く抑えられた.さらに、底 層においても溶存酸素濃度が高く推移し、周年にわ たって3mg/I O2未満の貧酸素化はみられなかった.

一方,深場(水深4m)を仮定したモデルでは, 底生微細藻類の生育が悪く,底泥から溶出する栄養 塩が吸収されずに水中に過剰に溶解し,それによっ て増殖した植物プランクトンや懸濁有機物による遮 光効果のために底層への光供給が絶たれ,底生微細 藻類がまったく生育できない環境が形成された.ま た,底層で貧酸素化がみられたことでも,浅場の計 算結果と対照的である.本研究では有機物の外部負 荷量に特定値を与えて計算したので、外部負荷量が 異なれば水深による水質変動パターンも異なると考 えられるが,底生微細藻類の代謝活動の光依存性を 考慮することで,水深によって水質変動パターンが 顕著に異なった点は興味深い.本モデルでは物質循 環のコンパートメントが多岐に及び,鉛直1次元モ デルといえども大自由度の計算系になっている。こ のため,現段階で特定水域における水質変動予測に 応用することは困難である.しかし,閉鎖性水域に おける浅場の保全や造成に関するシナリオ分析に有 効な手段を提供できるだろうし,外部負荷量や各要 素の諸元について調査や実験を通して具体的な値を 求めていけば,モデルの記述力は改善されるだろう.

水中の照度は光の消散によって,水深に対して指 数関数的に減少する.このため,多くの汽水湖のよ うに比較的透明度の低い水域では,僅かな水深の変 化であっても水底における光供給量と底生微細藻類 の活性に大きな影響をもたらすことは、本研究の試 算結果からも示唆される通りである.護岸によって 失われた広大な浅場がどれだけの栄養塩吸収能力を 持っていたか,過去の地形データと本研究で示した ようなモデル計算から再評価することは,今後の環 境管理目標を設定する上で有用な情報を与えるだろ う.田口ら¹⁷⁾は諏訪湖・霞ヶ浦・琵琶湖および内湖 (蓮池・菅沼・神上沼・松の木内湖・西の湖)を対 象とした物質循環モデルを比較検討し,水域の浄化 容量は水域の規模に応じて増大する傾向がみられる ものの,必ずしも規模だけが支配要因ではなく,同 じ規模でも水生植物帯を有し、かつ植生が濃密な水 域では浄化容量が大きくなることを示し,閉鎖性水 域における浅場の機能を強調している.これらのモ デル計算では,沈水植物や抽水植物に付着している 微細藻類による栄養塩の吸収が考慮されたが,実際 の水域では堆積物表層にも底生微細藻類が存在し, 堆積物から溶出する栄養塩を吸収している.本研究 で試算したところ, 堆積物表層の底生微細藻類だけ でも水質変動に顕著な影響を与えることが示され、 閉鎖性水域における浅場の浄化機能を評価するには、 大型植物やそれらに付着する微細藻類だけでなく, 堆積物表層において生育する底生微細藻類の栄養塩 吸収機能とその光依存性を考慮することが重要である.

4.まとめ

本研究は、汽水域や内湾域を対象とし、その健全 性を評価するため、従来の漂泳系モデルに堆積物フ ラックスモデル¹⁰及び底生微細藻類モデル⁸⁾を組み 合わせた生態系モデルを開発するとともに、閉鎖的 環境下の試計算を行い、水深による水質の変動特性 の相違について検討した.

水深2mと4mの比較から,底層へ到達する光量の 差違に起因して底生微細藻類の生育の有無が生じ た.また,これに起因して漂泳系を構成する各要 素の変動パターンに大きな差違が生じることが示 された.このことから汽水域や内湾域の物質循環 に底生微細藻類が大きく影響することがわかった. 今後,抽水植物や二枚貝などの環境浄化効果を

モデル内に取り込み,これらの機能について評価 を行う予定である.また,特定な対象水域を設定 し本モデルの妥当性を検証する必要がある.

謝辞:本研究は農林水産省委託プロジェクト研究 「自然共生:流域圏における水循環・農林水産生態 系の自然共生型管理技術の開発」に基づいて実施し たことをここに記し,関係各位に謝意を表する.

参考文献

- 1)環境省総合環境政策局環境計画課:平成15年版環境白書,ぎょうせい,2002.
- 2)環境庁水環境研究会:内湾・内海の水環境(須藤隆一, 環境庁水質保全局水質帰省課監修),ぎょうせい, 1996.
- Scheffer, M., Carpenter, Foley, S., J. A., Folks, C., Walker, B.: Catastrophic shifts in ecosystems, *Nature*, Vol.413,

pp.591-596, 2001.

- 4) 國井秀伸, 汽水域の水生植物, 高安克己編, 「汽水域 の科学-中海・宍道湖を例として」, たたら書房, 2001.
- Nowicki,B., S.Nixon: Benthic community metabolism in a coastal lagoon ecosystem, *Marine Ecology Progress*, Series 22, pp.21-30, 1985.
- 6) Sundback, K., V.Enoksson, W.Graneli, K. Pettersson: Influence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water, a laboratory study, *Marine Ecology Progress*, Series 74, pp.263-279, 1991.
- Rizzo, W., G. Lackey, R. Christian: Significance of euphotic subtidal sediment to oxygen and niturient cycling in a temperature estuary, *Marine Ecology Progress*, Series 86, pp.51-61, 1992.
- Cerco, C.F., Seitzinger, S.P: Measured and Modeled Effects of Benthic Algae on Eutrophication in Indian River-Rehoboth Bay, Delaware, *Estuaries*, Vol.20, pp.231-248, 1997.
- 9) J. C. Blackford: The Influence of Microphotobenthos on the Northrn Adriatic Ecosystem: A Modeling Study, Estuarine, Coastal and Shelf Science, Vol.55, pp.109-123, 2002.
- 10)DiToro, D.M.: Sediment Flux Modeling, John Wiley & Sons, Inc, New York, 2001.
- 11) Kramer, N., Nixon, W.:沿岸生態系の解析(中田喜三郎 監訳), 生物研究所, 1978.
- 12)Wroblewski, J. S., J. G. Richman: A model of phytoplankton plume formation during Oregon upwelling, *J. Mar. Res.*, Vol.35, pp.357-394, 1977.
- 13)Brent, Richard P.: *Algorithms for Minimization without Derivatives*, Prentice Hall, New Jersey, 1973.
- 14) 岩佐義郎:湖沼工学,山海堂,1990.
- 15) 土木学会:水理公式集(平成11年度版), 丸善, 1999.
- 16) 高橋正征,古屋研,石丸隆:生物海洋学2,東海大学 出版会,1996.
- 17) 田口浩一,中田喜三郎,田森日出春:湖沼・内湖の 物質循環-生態系モデルによる生物学的水質浄化機能 の評価-, J. Adv. Mar. Sci. Tech. Soci., Vol.7(1-2), pp.31-52, 2001.

